Transient releases of acetaldehyde from tree leaves−products of a pyruvate overflow mechanism?
نویسنده
چکیده
Emissions of acetaldehyde from tree leaves were investigated by proton-transfer-reaction mass spectrometry (PTR-MS), a technique that allows simultaneous monitoring of different leaf volatiles, and confirmed by derivatization and high-performance liquid chromatography analysis. Bursts of acetaldehyde were released by sycamore, aspen, cottonwood and maple leaves following light–dark transitions; isoprene emission served as a measure of chloroplastic processes. Acetaldehyde bursts were not accompanied by ethanol, but exposure of leaves to inhibitors of pyruvate transport or respiration, or anoxia, led to much larger releases of acetaldehyde, accompanied by ethanol under anoxic conditions. These same leaves have an oxidative pathway for ethanol present in the transpiration stream, resulting in acetaldehyde emissions that are inhibited in vivo by 4-methylpyrazole, an alcohol dehydrogenase (Adh) inhibitor. Labelling of leaf volatiles with 13 CO 2 suggested that the pools of cytosolic pyruvate, the proposed precursor of acetaldehyde bursts, were derived from both recent photosynthesis and cytosolic carbon sources. We hypothesize that releases of acetaldehyde during light–dark transitions result from a pyruvate overflow mechanism controlled by cytosolic pyruvate levels and pyruvate decarboxylase activity. These results suggest that leaves of woody plants contribute reactive acetaldehyde to the atmosphere under different conditions: (1) metabolic states that promote the accumulation of cytosolic pyruvate, triggering the pyruvate decarboxylase reaction; and (2) leaf ethanol oxidation resulting from ethanol transported from anoxic tissues. Key-words : acetaldehyde; ethanol; isoprene; leaves; lightenhanced-dark-respiration; proton-transfer-reaction mass spectrometry; pyruvate; pyruvate decarboxylase; volatile organic compound emissions.
منابع مشابه
Transient release of oxygenated volatile organic compounds during light-dark transitions in Grey poplar leaves.
In this study, we investigated the prompt release of acetaldehyde and other oxygenated volatile organic compounds (VOCs) from leaves of Grey poplar [Populus x canescens (Aiton) Smith] following light-dark transitions. Mass scans utilizing the extremely fast and sensitive proton transfer reaction-mass spectrometry technique revealed the following temporal pattern after light-dark transitions: he...
متن کاملThe Gas Phase Oxidation of Acetaldehyde Reaction Mechanism and Kinetics
The mechanism of the low temperature oxidation of gaseous acetaldehyde was investigated in the temperature range of 1 50-400?°C. The minor, intermediate and major products were identified and measured quantitatively by sampling directly into the ionization chamber of an MS10-C2 mass spectrometer from the reactor. The formation of H2O, CO, CO2, HCOOH, H2, HCHO, CH3COOH and CH3OH as the major pro...
متن کاملCarbon isotope analysis of acetaldehyde emitted from leaves following mechanical stress and anoxia.
Although the emission of acetaldehyde from plants into the atmosphere following biotic and abiotic stresses may significantly impact air quality and climate, its metabolic origin(s) remains uncertain. We investigated the pathway(s) responsible for the production of acetaldehyde in plants by studying variations in the stable carbon isotope composition of acetaldehyde emitted during leaf anoxia o...
متن کاملDkPK Genes Promote Natural Deastringency in C-PCNA Persimmon by Up-regulating DkPDC and DkADH Expression
The astringency of Chinese pollination-constant non-astringent (C-PCNA) persimmon (Diospyros kaki Thunb.) can be naturally removed on the tree. This process is controlled by a single locus and is dominant against other types of persimmons; therefore, this variant is an important candidate for commercial cultivation and the breeding of PCNA cultivars. In our previous study, six full-length codin...
متن کاملA novel algorithm to determine the leaf (leaves) of a binary tree from its preorder and postorder traversals
Binary trees are essential structures in Computer Science. The leaf (leaves) of a binary tree is one of the most significant aspects of it. In this study, we prove that the order of a leaf (leaves) of a binary tree is the same in the main tree traversals; preorder, inorder, and postorder. Then, we prove that given the preorder and postorder traversals of a binary tree, the leaf (leaves) of a bi...
متن کامل